Telegram Group & Telegram Channel
Почему интересен ARC prize?

Для тех, кто пропустил - неделю назад был запущен конкурс на миллион, в котором нужно решить ARC - простейший "тест на IQ" для человека/алгоритма. В нём нужно по паре-тройке примеров увидеть закономерность и применить её на тестовом образце (см. пример задачи на картинке). Это проверяет алгоритм на обучаемость, а не на запоминание данных из интернета.

Как я уже недавно писал, если в лоб дать такие задачи GPT-4, то она работает достаточно стрёмно. В то же время, лидируют подходы на основе перебора всевозможных последовательностей элементарных операций. Нужно задать набор таких операций, например, из 50 штук, создать 50^4 "программ" и прогнать их на тренировочных образцах, применив успешные к тесту.

Больше года назад, как только я начал вести этот канал, я писал о том, что совместная работа перебора и нейросетей - это очень мощный инструмент. Это жжёт в Go, в математике, в приложениях. Поиску нужен качественный гайд, чтобы тащить, и таким гайдом вполне может быть LLM, как мы увидели на примере FunSearch.

Такой подход применим при решении "NP-задач", для которых мы можем быстро проверить кандидата на решение. Наличие только пары примеров в ARC сильно усложняет проблему, так как "оптимизация" программы будет работать плохо и нам легче на них "переобучиться" программой. Тем не менее, нет сомнений, что скачка в качестве достичь удастся, и такие попытки уже делаются. Осталось только дождаться сабмитов таких подходов в настоящий тест.

Тем не менее, есть проблема применимости такого подхода. Далеко не всегда в реальности мы можем генерировать тысячи/миллионы вариантов с помощью большой модели, применяя поверх какую-то проверялку, потому что быстрой проверялки просто нет. Для применимости этой большой модели в лоб к произвольной задаче нам нужно получить такую, которая как минимум решит ARC без помощи дополнительного перебора.

А зачем именно нужна такая модель? 2 простых юзкейса:

1) Хочется иногда с чашечкой латте провести время за глубокой дискуссией с моделькой, знающей и хорошо понимающей информацию из интернета. Если вы пробовали долго общаться с моделькой типа GPT-4 на сложную тему, вы замечали, что она вообще не вдупляет.
2) Запустить цикл технологической сингулярности

Про второе поговорим позже на этой неделе.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/190
Create:
Last Update:

Почему интересен ARC prize?

Для тех, кто пропустил - неделю назад был запущен конкурс на миллион, в котором нужно решить ARC - простейший "тест на IQ" для человека/алгоритма. В нём нужно по паре-тройке примеров увидеть закономерность и применить её на тестовом образце (см. пример задачи на картинке). Это проверяет алгоритм на обучаемость, а не на запоминание данных из интернета.

Как я уже недавно писал, если в лоб дать такие задачи GPT-4, то она работает достаточно стрёмно. В то же время, лидируют подходы на основе перебора всевозможных последовательностей элементарных операций. Нужно задать набор таких операций, например, из 50 штук, создать 50^4 "программ" и прогнать их на тренировочных образцах, применив успешные к тесту.

Больше года назад, как только я начал вести этот канал, я писал о том, что совместная работа перебора и нейросетей - это очень мощный инструмент. Это жжёт в Go, в математике, в приложениях. Поиску нужен качественный гайд, чтобы тащить, и таким гайдом вполне может быть LLM, как мы увидели на примере FunSearch.

Такой подход применим при решении "NP-задач", для которых мы можем быстро проверить кандидата на решение. Наличие только пары примеров в ARC сильно усложняет проблему, так как "оптимизация" программы будет работать плохо и нам легче на них "переобучиться" программой. Тем не менее, нет сомнений, что скачка в качестве достичь удастся, и такие попытки уже делаются. Осталось только дождаться сабмитов таких подходов в настоящий тест.

Тем не менее, есть проблема применимости такого подхода. Далеко не всегда в реальности мы можем генерировать тысячи/миллионы вариантов с помощью большой модели, применяя поверх какую-то проверялку, потому что быстрой проверялки просто нет. Для применимости этой большой модели в лоб к произвольной задаче нам нужно получить такую, которая как минимум решит ARC без помощи дополнительного перебора.

А зачем именно нужна такая модель? 2 простых юзкейса:

1) Хочется иногда с чашечкой латте провести время за глубокой дискуссией с моделькой, знающей и хорошо понимающей информацию из интернета. Если вы пробовали долго общаться с моделькой типа GPT-4 на сложную тему, вы замечали, что она вообще не вдупляет.
2) Запустить цикл технологической сингулярности

Про второе поговорим позже на этой неделе.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/190

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Knowledge Accumulator from sg


Telegram Knowledge Accumulator
FROM USA